Canadian Centre for Occupational Health and Safety
Symbol of the Government of Canada


What is heat stress?

"Heat stress" is the net (overall) heat burden on the body from the combination of the body heat generated while working, environmental sources (air temperature, humidity, air movement, radiation from the sun or hot surfaces/sources) and clothing requirements. [Reference: 2008 TLVs and BEIs: Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists, 2008. p. 217.] Other heat-related terms are at the end of this document in the Glossary of Terms.

In foundries, steel mills, bakeries, smelters, glass factories, and furnaces, extremely hot or molten material is the main source of heat. In outdoor occupations, such as construction, road repair, open-pit mining and agriculture, summer sunshine is the main source of heat. In laundries, restaurant kitchens, and canneries, high humidity adds to the heat burden. In all instances, the cause of heat stress is a working environment which can potentially overwhelm the body's ability to deal with heat.

Most people feel comfortable when the air temperature is between 20°C and 27°C and the when relative humidity ranges from 35 to 60%. When air temperature or humidity is higher, people feel uncomfortable. Such situations do not cause harm as long as the body can adjust and cope with the additional heat. Very hot environments can overwhelm the body's coping mechanisms leading to a variety of serious and possibly fatal conditions.

This OSH Answers document contains information relating to the health effects of hot environments. Please see Working in Hot Environments - Control Measures for information about the prevention and control from heat related illnesses.


How does the human body react to hot environments?

The healthy human body maintains its internal temperature around 37°C. Variations, usually of less than 1°C, occur with the time of the day, level of physical activity or emotional state. A change of body temperature exceeding 1°C occurs only during illness or when environmental conditions surpass the body's ability to cope with extreme temperatures.

As the environment warms-up, the body tends to warm-up as well. The body's internal "thermostat" maintains a constant inner body temperature by pumping more blood to the skin and by increasing sweat production. In this way, the body increases the rate of heat loss to balance the heat burden created by the environment. In a very hot environment, the rate of "heat gain" exceeds the rate of "heat loss" and the body temperature begins to rise. A rise in the body temperature results in heat illnesses.


How does the body control heat gain and heat loss?

The main source of heat gain is the body's own internal heat. Called metabolic heat, it is generated within the body by the biochemical processes that keep us alive and by the energy we use in physical activity. The body exchanges heat with its surroundings mainly through radiation, convection, and evaporation of sweat.

Radiation is the process by which the body gains heat from surrounding hot objects, such as hot metal, furnaces or steam pipes, and loses heat to cold objects, such as chilled metallic surfaces, without contact with them. No radiant heat gain or loss occurs when the temperature of surrounding objects is the same as the skin temperature (about 35°C).

Convection is the process by which the body exchanges heat with the surrounding air. The body gains heat from hot air and loses heat to cold air which comes in contact with the skin. Convective heat exchange increases with increasing air speed and increased differences between air and skin temperature.

Evaporation of sweat from the skin cools the body. Evaporation proceeds more quickly and the cooling effect is more pronounced with high wind speeds and low relative humidity. In hot and humid workplaces, the cooling of the body due to sweat evaporation is limited by the capacity of the ambient air to accept additional moisture. In hot and dry workplaces, the cooling due to sweat evaporation is limited by the amount of sweat produced by the body.

The body also exchanges small amounts of heat by conduction and breathing. By conduction, the body gains or loses heat when it comes into direct contact with hot or cold objects. Breathing exchanges heat because the respiratory system warms the inhaled air. When exhaled, this warmed air carries away some of the body's heat. However, the amount of heat exchanged through conduction and breathing is normally small enough to be ignored in assessing the heat load on the body.


What are the effects of hot environments on the body?

When the air temperature or humidity rises above the optimal ranges for comfort, problems can arise. The first effects are subjective in nature - they relate to how you feel. Exposure to more heat stress can cause physical problems which impair workers' efficiency and may cause adverse health effects. (Short-term exposure / Long-term exposure).

Some of the problems and their symptoms experienced in the temperature range between a comfortable zone (20C - 27°C) and the highest tolerable limits (for most people) are summarized in Table 1.

Table 1
Problems and Symptoms Caused by Hot Temperatures
Temperature Range (°C) Effects
20 - 27°CComfort Zone Maximum efficiency
as temperature
increases...
Discomfort:
  • Increased irritability
  • Loss of concentration
  • Loss of efficiency in mental tasks
Mental Problems
Increase of errors:
  • Loss of efficiency in skilled tasks
  • More incidents
Pyscho-physiological problems
Loss of performance of heavy work:
  • Disturbed water and electrolyte balance
  • Heavy load on heart and circulation
  • Fatigue and threat of exhaustion
Physiological problems
35 - 40°C Limit of high temperature tolerance

In moderately hot environments, the body "goes to work" to get rid of excess heat so it can maintain its normal body temperature. The heart rate increases to pump more blood through outer body parts and skin so that excess heat is lost to the environment, and sweating occurs. These changes impose additional demands on the body. Changes in blood flow and excessive sweating reduce a person's ability to do physical and mental work. Manual work produces additional metabolic heat and adds to the body heat burden. When the environmental temperature rises above 30°C, it may interfere with the performance of mental tasks.

Heat can also lead to accidents resulting from the slipperiness of sweaty palms and to accidental contact with hot surfaces. As a worker moves from a cold to a hot environment, fogging of eye glasses can briefly obscure vision, presenting a safety hazard.

Several studies comparing the heat tolerances of men and women have concluded that women are generally less heat tolerant than men. While this difference seems to diminish when such comparisons take into account cardiovascular fitness, body size and acclimatization, women have a lower sweat rate than men of equal fitness, size and acclimatization. Laboratory experiments have shown that women may be more tolerant of heat under humid conditions, but slightly less tolerant than men under dry conditions.


What are the illnesses caused by heat exposure?

The risk of heat-related illness varies from person to person. A person’s general health also influences how well the person adapts to heat (and cold). Those with extra weight often have trouble in hot situations as the body has difficulty maintaining a good heat balance. Age (particularly for people about 45 years and older), poor general health, and a low level of fitness will make people more susceptible to feeling the extremes of heat.

Medical conditions can also increase how susceptible the body is. People with heart disease, high blood pressure, respiratory disease and uncontrolled diabetes may need to take special precautions. In addition, people with skin diseases and rashes may be more susceptible to heat.

Substances -- both prescription or otherwise -- can also have an impact on how people react to heat.

Heat exposure causes the following illnesses:

Heat edema is swelling which generally occurs among people who are not acclimatized to working in hot conditions. Swelling is often most noticeable in the ankles. Recovery occurs after a day or two in a cool environment.

Heat rashes are tiny red spots on the skin which cause a prickling sensation during heat exposure. The spots are the result of inflammation caused when the ducts of sweat glands become plugged.

Heat cramps are sharp pains in the muscles that may occur alone or be combined with one of the other heat stress disorders. The cause is salt imbalance resulting from the failure to replace salt lost with sweat. Cramps most often occur when people drink large amounts of water without sufficient salt (electrolyte) replacement.

Heat exhaustion is caused by loss of body water and salt through excessive sweating. Signs and symptoms of heat exhaustion include: heavy sweating, weakness, dizziness, visual disturbances, intense thirst, nausea, headache, vomiting, diarrhea, muscle cramps, breathlessness, palpitations, tingling and numbness of the hands and feet. Recovery occurs after resting in a cool area and consuming cool salted drinks.

Heat syncope is heat-induced giddiness and fainting induced by temporarily insufficient flow of blood to the brain while a person is standing. It occurs mostly among unacclimatized people. It is caused by the loss of body fluids through sweating, and by lowered blood pressure due to pooling of blood in the legs. Recovery is rapid after rest in a cool area.

Heat stroke and hyperpyrexia (elevated body temperature) are the most serious types of heat illnesses. Signs of heat stroke include body temperature often greater than 41°C, and complete or partial loss of consciousness. The signs of heat hyperpyrexia are similar except that the skin remains moist. Sweating is not a good symptom of heat stress as there are two types of heat stroke – “classical” where there is little or no sweating (usually occurs in children, persons who are chronically ill, and the elderly), and “exertional” where body temperature rises because of strenuous exercise or work and sweating is usually present.

Heat stroke and heat hyperpyrexia require immediate first aid and medical attention. Delayed treatment may result in damage to the brain, kidneys and heart. Treatment may involve removal of the victim's clothing and spraying the body with cold water. Fanning increases evaporation and further cools the body. Immersing the victim in cold water more efficiently cools the body but it can result in harmful overcooling which can interfere with vital brain functions so it must only be done under close medical supervision.


What are the illnesses caused by long-term (chronic) heat exposure?

Certain kidney, liver, heart, digestive system, central nervous system and skin illnesses are thought by some researchers to be linked to long-term heat exposure. However, the evidence supporting these associations is not conclusive.

Chronic heat exhaustion, sleep disturbances and susceptibility to minor injuries and sicknesses have all been attributed to the possible effects of prolonged exposure to heat.

The lens of the eye is particularly vulnerable to radiation produced by red-hot metallic objects (infrared radiation) because it has no heat sensors and lacks blood vessels to carry heat away. Glass blowers and furnace-men have developed cataracts after many years of exposure to radiation from hot objects. Foundry workers, blacksmiths and oven operators are also exposed to possibly eye-damaging infrared radiation.

A possible link between heat exposure and reproductive problems has been suggested. Data from laboratory experiments on animals have shown that heat stress may adversely affect the reproductive function of males and females. Exposure of males resulted in reduced rate of conception. Exposure of females caused disruption of the reproductive cycle until they became acclimatized to heat. When animals are simultaneously exposed to heat and toxic chemicals, the influence of heat exposure seems to accelerate the chemical reactivity.

In men, repeatedly raising testicular temperature 3 to 5°C decreases sperm counts. There is no conclusive evidence of reduced fertility among heat-exposed women. There are no adequate data from which conclusions can be drawn regarding the reproductive effects of occupational heat exposure at currently accepted exposure limits.

Laboratory study of warm-blooded animals has shown that exposure of the pregnant females to hyperthermia may result in a high incidence of embryo deaths and malformations of the head and the central nervous system (CNS). There is no conclusive evidence of teratogenic effects of hyperthermia in humans. The NIOSH criteria document (1986) recommends that a pregnant worker's body temperature should not exceed 39-39.5°C during the first trimester of pregnancy.

(Reference: Occupational exposure to hot environments. Revised Criteria. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1986)


What are some of the terms used in this document (Glossary of Terms)?

Acclimatization - Physiological changes which occur in response to several days of heat exposure and make the body accustomed to a hot environment.

Convection - Process of heat exchange between the body and the surrounding air or fluid as a result of bulk flow of that air or fluid.

Dehydration - Loss or deficiency of water in body tissues caused by sweating, vomiting or diarrhea. Symptoms include excessive thirst, nausea, and exhaustion.

Heat cramps - Painful and often incapacitating cramps in muscles. Heat cramps are caused by depletion of salt in the body as a result of heavy sweating, and ingestion of water without replacing salt.

Heat exhaustion - Weakness, lassitude, dizziness, visual disturbance, feeling of intense thirst and heat, nausea, vomiting, palpitations, tingling and numbness of extremities after exposure to a hot environment.

Heat hyperpyrexia - Rise in body temperature with moist skin and mental dysfunction, caused by exposure to an extremely hot environment.

Heat rash (prickly heat or milliaria) - An itchy rash of small raised red spots on the face, neck, back, chest and thighs caused by a hot and moist environment.

Heat strain - Physiological and behavioural responses of the body as a result of heat exposure.

Heat stroke - Acute illness caused by overexposure to heat. Symptoms are dry, hot skin, high body temperature (usually over 105F) and mental dysfunction.

Heat syncope - Temporary loss of consciousness induced by insufficient flow of blood to the brain. Recovery is normally prompt and without any long-term ill effects.

Metabolic rate - Rate of energy (heat) production of the body which varies with the level of activity.

Natural Wet Bulb Temperature - Air temperature measured using a thermometer in which the bulb is covered with wet cotton wick and cooled by the natural movement of air.

Nausea - The feeling that one is about to vomit as experienced in seasickness.

Prickly heat - See Heat rash.

Radiation (heat) - Transfer of heat between hot and cold bodies without contact between them.

Relative humidity - The ratio of the water vapour content of air to the maximum possible water vapour content of air at the same temperature and air pressure.

Back To Top

Want more information?

You may be interested in these related products and services from CCOHS:

For further assistance with a particular workplace topic or issue, contact our Inquiries & Client Services team. This service is free, reliable, and confidential.


Document last updated on July 28, 2008

Copyright ©1997-2014 Canadian Centre for Occupational Health & Safety