Hazardous energy is defined by the Canadian Standards Association (CSA) as: "any electrical, mechanical, pneumatic, chemical, nuclear, thermal, gravitational, or other energy that can harm people" (CSA Z460 "Control of Hazardous Energy - Lockout and Other Methods"). Some energy sources are obvious, such as electricity, heat in a furnace, or something that might fall. Others may be hidden hazards such as air pressure in a system or a tightly wound spring.
In this document, the term energy refers to anything that can provide power to a system to allow it to perform work. The term system refers to machinery, equipment, and/or processes.
Electrical energy is the most common form of energy used in workplaces. It can be available live through power lines or it can also be stored, for example, in batteries or capacitors. Electricity can harm people in one of three ways:
See the Electrical Safety - Basic Information OSH Answers document for more details.
Hydraulic potential energy is the energy stored within a pressurized liquid. When under pressure, the fluid can be used to move heavy objects, machinery, or equipment. Examples include: automotive car lifts, injection moulding machines, power presses, and the braking system in cars. When hydraulic energy is released in an uncontrolled manner, individuals may be crushed or struck by moving machinery, equipment or other items.
Pneumatic potential energy is the energy stored within pressurized air. Like hydraulic energy, when under pressure, air can be used to move heavy objects and power equipment. Examples include spraying devices, power washers, or machinery. When pneumatic energy is released in an uncontrolled manner, individuals may be crushed or struck by moving machinery, equipment or other items.
Chemical energy is the energy released when a substance undergoes a chemical reaction. The energy is normally released as heat, but could be released in other forms, such as pressure. A common result of a hazardous chemical reaction is fire or explosion.
Radiation energy is energy from electromagnetic sources. This energy covers all radiation from visible light, lasers, microwave, infra red, ultraviolet, and X-rays. Radiation energy can cause health effects ranging from skin and eye damage (lasers and UV light) to cancer (X-rays).
Gravitational potential energy is the energy related to the mass of an object and its distance from the earth (or ground). The heavier an object is, and the further it is from the ground, the greater its gravitational potential energy. For example, a 1 kilogram (kg) weight held 2 metres above the ground will have greater gravitational potential energy then a 1 kg held 1 metre above the ground.
Mechanical energy is the energy contained in an item under tension. For instance, a spring that is compressed or coiled will have stored energy which will be released in the form of movement when the spring expands. The release of mechanical energy may result in an individual being crushed or struck by the object.
The terms lockout and hazardous energy control are sometimes used interchangeably, but they are NOT the same thing. Hazardous energy control is a broad term describing the use of procedures, techniques, designs and methods to protect personnel from injury due to the inadvertent release of hazardous energy. Lockout is the placement of a lock or tag on an energy-isolating device in accordance with an established procedure. It indicates that the energy-isolating device is not to be operated until removal of the lock or tag. Therefore, lockout is one way in which hazardous energy control can be achieved.
See the Lockout/Tag out OSH Answers document for more information.
In most cases, equipment or systems will have safety devices built in. These safety devices include barrier guards and safeguarding devices to help protect workers during normal operations. However, during maintenance or repairs, these devices may have to be removed or by-passed. In these situations, a hazardous energy control program is needed.
A hazardous energy control program is used to maintain worker safety by preventing:
Lockout is generally viewed as the most reliable way to protect an individual from hazardous energy because you are bringing the system to a zero energy state. When a system is in a zero energy state the hazard has been eliminated; thus, no hazardous energy exists. However, in some cases, using lockout is not practical because of its impact on operations and various other functions. Therefore, other controls can be implemented as long as adequate risk reduction of the hazard is obtained. This type of control means following a full set of steps to determine the hazards and risks of each task being performed, and determining what controls can be used to minimize and reduce risk to an adequate level. If an adequate level of risk cannot be achieved, then lockout will be the default method of control.
Hazardous energy control programs involve 5 steps:
1. Gather Information
Begin by gathering documentation from the manufacturer or designer of the system about:
This information will allow you to understand how the system was intended to be used, and will provide you with recommendations on how the tasks can be performed safely.
2. Perform a Task Analysis
A task identification analysis is performed by examining all the intended uses of the system from the perspective of both the manufacturer and the user. List all tasks and steps required to accomplish the task. This analysis should also include any tasks related to any possible misuse of the system. When performing the task identification, at a minimum, consider the following categories:
3. Perform a Hazard and Risk Analysis
Based upon the information from the first two steps, perform a hazard and risk analysis of how workers will be interacting with the system. This analysis should outline where possible hazards are, and what the associated risk of each hazard exists.
A recommended process for identifying hazards and their associated risk are outlined in both the CSA Z460 "Control of Hazardous Energy - Lockout and Other Methods" and the ISO 12100 "Safety of Machinery -- General Principles for Design - Risk Assessment and Risk Reduction" standards.
The hazard and risk analysis will outline all situations where a worker could be exposed to hazards. Examples include:
4. Implement Controls
The controls required will follow what hazards and risks were identified during the analysis and assessment. For example, identify what types of hazardous energy are present in a system that needs to be controlled, and what types of energy-isolating and de-energizing devices are required.
5. Communication, including Training
Communicate and train appropriate staff on how the program works, their role in the program, and what their responsibilities are.
Document last updated on March 7, 2013
Copyright ©1997-2013 Canadian Centre for Occupational Health & Safety